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Laplace Transforms in Design and Analysis of Circuits© 
 

Part 1 - Basic Transforms 
 
 
 

Why Use the Laplace Transform? 
 

The techniques developed in this series of modules apply quite successfully 
to analog circuits that are required in certain circuit applications.  When all is 
said and done we still need to get information from point to point and in an 
output format that is readily interpreted by a human brain.  Digital techniques 
are appropriate for low power data/signal/information manipulation internal 
to a machine; however, our brains respond best to integrated analog outputs.  
Analog design is becoming a niche specialty like the engineering functions of 
RF, EMI, Reliability, Worst Case Analysis, etc. 

 
In a short synopsis, using the Laplace transform method of solving circuit 
differential equations a. allows the building of simple algebraic transfer 
functions that mathematically model the actual circuit, b.  provide a quick 
method for calculating transfer function amplitude and phase as a function of 
frequency,  c.  creates a foundation for the rapid calculating and graphing of 
circuit loop behavior with respect to stability, and d. summing the above, the 
use of transforms provides a simple procedure for performing an essential 
engineering function, i.e.,  predict circuit output as a function of input.  We 
will get to all of these as a matter of course, but first comes the fundamentals. 
 
A simple transfer function: we are all familiar with the concept of calculating 
the output by using a voltage division network, i.e. 
 

Z1

Vin VoutZ2

It Io
 

because the circuit is series 𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑜𝑜, 
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                                               . 𝑉𝑉𝑖𝑖𝑖𝑖

𝑧𝑧1+𝑧𝑧2
 = 𝑉𝑉𝑜𝑜

𝑧𝑧2
 or. 

𝑉𝑉𝑜𝑜 = 𝑉𝑉𝑖𝑖𝑖𝑖 �
𝑧𝑧2

𝑍𝑍1 + 𝑍𝑍2
� 

 
which is a very handy and simple way of predicting the output for any given 
input.  It is, in fact, a very simple transfer function.  Be aware that we are 
slanting the whole further development of analysis and design around the 
transfer function modeling technique as illustrated in the simple example 
above.   
 
Notice that the equation has the general form of 
 

( ) inXferout *=  
 
where the term Xfer  means "transfer function".  Re-arranging this equation 
isolates and defines the transfer function as  
 

Xfer
in

out
=  

 
 
Transfer functions have the innate ability to allow prediction of output as a 
function of input, and as such are extremely valuable engineering tools.  
Getting there when the circuit equations are integral/differential can be 
cumbersome, and error fraught.  Nevertheless circuit equations are generally 
integral/differential and can be masked to be "worked around" by Laplace's 
technique. 
 
A Series Circuit 
 
Consider a low-pass filter; 
 

Vin
Vo

R

C
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The characteristic equation describing the voltage/current relationship for a 
resistor is  
 

V I R= ∗  or riv ×=  (lower case denotes time changing variables) 
  
whereas for a capacitor the relationship is 

dvi C
dt

=  

 
Because a capacitor is an open to DC, the vast majority of circuit problems in 
design or analysis that include capacitors occur in alternating, time changing 
current or charging to a predetermined voltage level, i.e., there is a 

dt
dv . 

 
Forming the ratio ino vv  for an RC network is not as straight forward as 
developing the impedance ratio as in the first case mentioned for the frequency 
independent case.  However a method of solving the problem follows, so that 
is how we will proceed.    
 
The following example is a simple capacitor charging situation.  We will 
consider the DC input case, where at 𝑡𝑡 = 0,  𝑉𝑉𝑐𝑐(0) = 0.  General circuit 
conditions will be covered later on.  
 
Observing that the circuit is a series circuit, and realizing that the current 
through the resistor MUST equal the current through the capacitor, we can 
write 
 

𝐼𝐼𝑟𝑟 = 𝐼𝐼𝑐𝑐  or 
 

.𝑉𝑉𝑖𝑖𝑖𝑖−𝑉𝑉𝑐𝑐
𝑅𝑅

= 𝐶𝐶 𝑑𝑑𝑉𝑉𝑐𝑐
𝑑𝑑𝑡𝑡

 
 
where Vc. and Vo. represent the same voltage.  The notation for voltage is 
changed to denote that Vin is non time variable. 
 
After suitable rearranging we get: 
 

𝑑𝑑𝑉𝑉𝑐𝑐 +
𝑉𝑉𝑐𝑐
𝑅𝑅𝐶𝐶 𝑑𝑑𝑡𝑡 =

𝑉𝑉𝑖𝑖𝑖𝑖
𝑅𝑅𝐶𝐶 𝑑𝑑𝑡𝑡 
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This relationship has an integrating factor of 𝑒𝑒

𝑡𝑡
𝑅𝑅𝑅𝑅. 

 
After both sides are multiplied by the integrating factor, the equation becomes 

𝑑𝑑𝑉𝑉𝑐𝑐𝑒𝑒
𝑡𝑡
𝑅𝑅𝑅𝑅 + 𝑉𝑉𝑐𝑐

𝑅𝑅𝑅𝑅
𝑒𝑒

𝑡𝑡
𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 = 𝑉𝑉𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅
𝑒𝑒

𝑡𝑡
𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 

 
Integrating both sides gives us;  
 

𝑉𝑉𝑐𝑐𝑒𝑒
𝑡𝑡
𝑅𝑅𝑅𝑅� = 𝑉𝑉𝑖𝑖𝑖𝑖𝑒𝑒

𝑡𝑡
𝑅𝑅𝑅𝑅� + 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 

 
Isolating the dependent variable .𝑉𝑉𝑅𝑅  the relationship becomes; 
 

𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 𝑒𝑒−𝑡𝑡 𝑅𝑅𝑅𝑅�  
 

At ;0=t  𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = −𝑉𝑉𝑖𝑖𝑖𝑖 to account for the initial condition of 𝑉𝑉𝑐𝑐(0) = 0. The 
complete solution is 

𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑖𝑖𝑖𝑖(1 − 𝑒𝑒−𝑡𝑡 𝑅𝑅𝑅𝑅� ) 
 
After learning Laplace Transform pairs and their applications, and having  
appealed to the use of the Laplace Transform instead of using Ordinary 
Differential Equations, the process devolves to simple Algebra. (the following 
is an example for illustration only at this point) 
 

𝑉𝑉𝑖𝑖𝑖𝑖
𝑅𝑅
− 𝑉𝑉𝑐𝑐

𝑅𝑅
= 𝐶𝐶 𝑑𝑑𝑉𝑉𝑐𝑐

𝑑𝑑𝑡𝑡
  becomes by direct application and some rearranging 

 
𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑠𝑠𝑅𝑅𝑅𝑅

= 𝑐𝑐𝑉𝑉𝑐𝑐(𝑐𝑐) + 𝑉𝑉𝑐𝑐(𝑠𝑠)
𝑅𝑅𝑅𝑅

   (Step 1) 
  

Further rearranging yields 
 

𝑉𝑉𝑐𝑐(𝑐𝑐) = 𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑅𝑅𝑅𝑅𝑠𝑠�𝑠𝑠+ 1
𝑅𝑅𝑅𝑅�

    (Step 2) 

 
After a touch of Partial Fraction Expansion (in module 2)  
 

𝑉𝑉𝑐𝑐(𝑐𝑐) = 𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑅𝑅𝑅𝑅𝑠𝑠�𝑠𝑠+ 1
𝑅𝑅𝑅𝑅�

= 𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑠𝑠

− 𝑉𝑉(𝑖𝑖𝑖𝑖)(𝑠𝑠)

𝑠𝑠+ 1
𝑅𝑅𝑅𝑅

    (Step 3) 
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That directly inverts to  
 

𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑖𝑖𝑖𝑖 �1 − 𝑒𝑒−𝑡𝑡 𝑅𝑅𝑅𝑅� �    (Step 4) 
 
a far simpler process.  Because converting differential circuit equations into 
their Laplace Transform pairs is so labor saving (and by extension, error 
saving) it is well worth while to become familiar with the process.   
 
The Definition 
 
Learning to convert expressions to their Laplace equivalent is straightforward.  
In every case we apply the definition of the Laplace Transform; 
 

( ) ( ) dtetfsF st−∞

∫= 0
 

 
This expression says that the Laplace Transform ( )sF  equals the integral of the 
time function ( )tf  times the transform function ste− .   
 
Ultimately the utility of the Laplace Transform is to predict circuit behavior 
as a function of time, and by extension, using Bode's technique, to predict 
output amplitude and phase as a function of frequency.  Further, the transform 
of the transfer function provides for plotting the poles and zeros of the  transfer 
function, which in turn, lays the foundation for the Root Locus method of 
analyzing circuit stability as a function of amplitude and frequency.  These 
topics will be covered in some detail as progression through the modules 
develops an ever increasing sophistication in the uses of the Laplace 
Transform. 
The Basic Transform Pairs 
 
Suppose we have a constant DC voltage of amplitude K .  The task is to apply 
the definition and develop the Laplace Transform of the constant K .   
 
Directly applying the definition; 
 
Recall that st

st

ee 1=−  and therefore as ∞→t , 01 →ste  and also that .10 =e  
 

( ) →= Ktf ( )
s
K

s
eKdteKdteKsF

st
stst =−===

∞−∞ −−∞

∫∫
000
|  
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s
KK ↔   (Transform Pair #1) 

 
For example a constant voltage of 10vdc transforms to s10 ; 413.32 
transforms to s32.413 ;  -22.87→ s87.22− ; etc., etc. 
 
Quite often in the physical world we are confronted with signals that 
exponentially decay over time and can be expressed as  
 

𝑓𝑓(𝑡𝑡) = 𝑒𝑒−𝜎𝜎𝑡𝑡 
 
σ  representing some physical parameter and having the units of sec1  or 
frequency (usually in Radians).  In electronics σ  is usually a time-constant 
generated by either an RC (resistance/capacitance) or an RL (resistance/ 
inductance) network.  Recall that a single time-constant is defined when 1=tσ
.  When 1=tσ , 37.=− te σ  meaning that the signal decays to 37% of its peak 
value in one time-constant.  
 
Graphically, it looks thus, 
 

 

Exponential Decay 

0.000 

0.200 

0.400 

0.600 

0.800 

1.000 

1.200 
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This particular form occurs so often in nature, especially when applied to 
signals, that decay over time is assigned a transform.   
 
Suppose there is an exponentially decaying voltage of value atKe−  
 
To find the transform we again directly apply the definition; 

 

( ) ( ) ( )
( )

( ) ( )as
K

as
KedteKdteeKsFKetf

tas
tasstatat

+
=

+
−===→=

∞+−∞ +−−∞ −− ∫∫
000
|  

 

as
KKe at

+
↔−   (Transform pair #2) 

 
For example: 
 

3
1010 3

+
↔−

s
e t  

 

78.6
36.236.2 78.6

+
−

↔− −

s
e t  

At this point we need to take a side excursion into Euler's Identities, as the use 
of these identities does two things; a. greatly simplifies the calculus of 
trigonometric functions by avoiding integration by parts, and b. familiarizes 
us with the notational shorthand found in the literature. 
 
All of the following four identities can be developed and established by using 
the processes of Maclaurin's infinite series, which is found in any beginning 
Calculus text; that aside, then 
 

𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡 = cos(𝜔𝜔𝑡𝑡) + 𝑗𝑗 𝑐𝑐𝑠𝑠𝑐𝑐(𝜔𝜔𝑡𝑡) 
𝑒𝑒−𝑗𝑗𝑗𝑗𝑡𝑡 = cos(𝜔𝜔𝑡𝑡)− 𝑗𝑗 𝑐𝑐𝑠𝑠𝑐𝑐(𝜔𝜔𝑡𝑡) 

 
The units on ω  are rads (radians), and further fπω 2= , also that tf 1=  (units 
on f is in Hertz and t  is in seconds), and as usual 1−=j .  While 𝑓𝑓 is indeed 
1 𝑡𝑡�  it is generally taken that 𝑡𝑡 is denoted as 𝑇𝑇 the period of 1 cycle, 
When convenient 𝑗𝑗𝜔𝜔𝑡𝑡 can be thought of as (𝑗𝑗 2𝜋𝜋𝑡𝑡

𝑇𝑇� )   Also note that from 
either of the above identities that, 
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𝑒𝑒±𝑗𝑗0 = cos(0) ± 𝑗𝑗𝑐𝑐𝑠𝑠𝑐𝑐(0) = 1 
 
Subtracting the lower from the upper of the above two, and rearranging, we 
get 
 

sin(𝜔𝜔𝑡𝑡) =
𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡 − 𝑒𝑒−𝑗𝑗𝑗𝑗𝑡𝑡

𝑗𝑗2  

 
then adding the two, and rearranging, we get 
 

.cos (𝜔𝜔𝑡𝑡) = 𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡 + 𝑒𝑒−𝑗𝑗𝑗𝑗𝑡𝑡

2
 

 
Using the Identities: 
 
Suppose we have a simple sinusoid, such as  
 

)sin()( tKtf ω=  
then 

Ktf =)(
j
ee tjtj

2

ωω −−  

 
finding the Laplace Transform by direct application then, 
 

( ) ( ) 




 −=







 −
∫∫∫
∞ +−∞ −−−∞ −

dtedte
j

Kdte
j
eeK tjstjsst

tjtj

000 22
ωω

ωω

 

 
performing the integration, and evaluation at the limits; 
 

( )

( )
( )

( ) ( ) ( ) 22
00

11
2

||
2 ω

ω
ωωωω

ωω

+
=








+

−
−

=







+

+
−

−
∞+−∞−−

s
K

jsjsj
K

js
e

js
e

j
K tjstjs

 

 
so 

22)sin(
ω
ωω
+

↔
s

KtK    (Transform pair #3) 

 
For example; 
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( )( )
( )22 72.7

72.73.5)72.7sin(3.5
+

↔
s

t = 40.92
(𝑠𝑠2+59.6)

 

 

( )25
30)5sin(6 2 +

↔
s

t  

 

( )6.59
92.40)72.7sin(3.5 2 +

−
↔−

s
t  

 
Let ( ) ( )tKtf ωcos= , then 
 

( ) ( ) dteKdteKdteeeKdtetKsF tjstjsst
sttj

st ∫∫∫∫
∞ +−∞ −−−∞ −∞ − +=







 +
==

0000 222
)cos()( ωω

ω

ω  

 
( ) ( )

( ) ( ) ( )2200

11
222 ωωω

ωω

+
=








+

+
−

=+ ∫∫
∞ +−∞ −−

s
Ks

jsjs
KeKdteK tjstjs  

 
Pair #4 then, 
 

( )22)cos(
ω

ω
+

↔
s

KstK   (Transform pair #4) 

Examples, 
 

( ) 25
4

5
4)5cos(4 222 +

=
+

↔
s

s
s

st  

 

49.18
67.5)3.4cos(67.5 2 +

−
↔−

s
st  

 
Consider )sin()( tKetf t ωσ−= ; applying the definition 
 

( ) ( ) 




 −=







 −
= ∫ ∫∫

∞ ∞ ++−−+−−∞ −
−

0 00 22
)( dttjstjsst

tjtj
t edte

j
Kdte

j
eeeKsF ωσωσ

ωω
σ  

 
( ) ( )

( ) ( )






++

−
−+

=




 −∫ ∫

∞ ∞ ++−−+−

ωσωσ
ωσωσ

jsjsj
Kedte

j
K dttjstjs 11

22 0 0
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( ) ( ) ( )( ) ( )( )






++−+
+−−++

=







++

−
−+ ωσωσ

ωσωσ
ωσωσ jsjs

jsjs
j

K
jsjsj

K (
2

11
2

 

 

( )( ) ( )( ) ( ) 22

(
2 ωσ

ω
ωσωσ
ωσωσ

++
=








++−+
+−−++

s
K

jsjs
jsjs

j
K  

 
So 
 

( ) 22)sin(
ωσ

ωωσ

++
↔−

s
KtKe t   (Transform Pair #5) 

 
Some examples 
 

( ) 363
30)6sin(5 2

3

++
↔−

s
te t  

 

( ) 69.309.2
23.36)54.5sin(54.6 2

9.2

++
−

↔− −

s
te t  

 
As an aside, the interpretation of an electric signal written as 
 

)54.5sin(54.6 9.2 te t−−  
 
It has a peak value of 54.6±  or |6.54| (Why can peak value be written as ±  in 
this case?) 
 
It has a time constant of ≈344 milliseconds 
 
Frequency in Hertz is about ≈.88 (How does 5.54 get  converted to .88?) 
 
To be complete an electric signal will be written as 
 

Keσtsin (ωt ± θ) 
 
 where 𝜃𝜃. is the phase angle of the signal when 0=t .  Either or both σ  and θ  
can be 0.  A 0=σ  condition implies the signal does not decay with time.  0≠θ  
means that )(tf  possesses some initial amplitude at 0=t . 
 
Next is 
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)cos()( tKetf t ωσ−=  

 
Applying the definition 
 

( ) ( ) 




 +=







 +
= ∫ ∫∫

∞ ∞ ++−−+−−
−∞ −

0 00 22
)( dtedteKdteeeeKsF tjstjsst

tjtj
t ωσωσ

ωω
σ  

 
Using the same procedures as previously, we get 
 

( )( )
( )

( )( )222 ωσ
σ

ωσωσ
ωσωσ

++
+

=







++−+
−++++

s
sK

jsjs
jsjsK  

 
and therefore 
 

( )
( )( )22)cos(

ωσ
σωσ

++
+

↔−

s
sKtKe t    (Transform pair # 6) 

 
Examples 
 

( )
( ) 625,4555.3

5.34.11)675cos(4.11 2
5.3

++
+

↔−

s
ste t  

. −6𝑒𝑒−4𝑡𝑡cos (5𝑡𝑡) ⟷ −6(𝑠𝑠+4)
(𝑠𝑠+4)2+52

  
 

Consider the function as shown below.   
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time
1

timea←

  

 
It is clear that the area of the function is 1.  At 0=t  however, the case is not 
so clear, therefore let us define this function to be )(tδ , possessing the 
following properties.   
 







 =∞

=
elsewhere

tt
;0

0;)(δ  

 
Since )(tδ  only exists when its argument is 0, and recalling that the area under 
the curve is 1, finding the integral is reasoned as follows 
 

∫
+

=
0

0
1)( dttδ  

 
The transform then 
 

∫
+

=−0

0

0 1)( dtet sδ  
so, 
 

1)( ↔tδ  (Transform pair #7) 
 
Examples, 
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1)(1 ↔tδ  
73.5)(73.5 ↔tδ  

Saved by Reality: 
 
A word of caution is not out of order  here.  In actuality, )(tδ  can never have 
a width of exactly 0, such a signal does not exist.  )(tδ  will always have some 
finite width, however narrow that may be (1 or 2 nanoseconds is pretty 
narrow).  Therefore recognizing that the area of )(tδ  is a constant, i.e., 1 for 
any width not exactly equal to 0 provides an extremely plausible argument.   
 
Even though )(tδ  has been defined to have an amplitude of ∞  at 0=t ,  in 
physical circuits ∞  is not realizable and some constraints must be applied to 
the idea of )(tδ  to be useful practically.  Circuit parameters, such as voltage, 
current and impedance, depend upon the variables of the circuit components, 
the power supply, bandwidth of the signal and of the circuit.  None of these 
variables can be infinite in a real circuit, therefore the practical or real limit 
on )(tδ  is constrained to a far lesser value.   
 
The most useful aspect of )(tδ  is that its existence is limited to a specific very 
narrow temporal envelope, i.e., +→ 00 .  In the limit that envelope has no width 
and is 0=t , and that is an intellectual construct.  For our purposes then, it 
follows that if )(tδ  is applied to a signal )(tg  the result is some )0(h .  As will 
be clear later the real utility here is that )(tδ  becomes a tool to define the 
existence of signals at, and only at 0=t  (or as we will show in the next section, 
where the argument 0)( =− at ).  The theoretical and mathematical subtleties 
of this function will not be utilized beyond its utility as a place holder in time. 
 
Time Shifting, the Unit Step and the Rectangular Pulse: 
 
Before we can mathematically define such a model for our purposes, it is 
necessary to introduce the modeling of time shifting.  For example; suppose 
we wish to define a signal to begin when the switch was thrown and the circuit 
is energized.  Let such a signal be known as ,g  and let us agree that g  
possesses an argument )(t , and further )(tg  does not exist until the value of 
the argument 0)( =t .  Or, 
 

0)( =tg  for all 0<t  
1)( =tg  for all 0≥t  
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Further, let us define an argument on g , such that when we write )( atg −  we 
agree that the signal cannot appear until the value 0=− at .  Such that  
 

0)( =− atg for all 0)( <− at  
1)( =− atg  for all 0)( ≥− at  

 
For example, 
 

timetime = a

g(t-a)

 
 
Notice that the signal we just agreed to define has an amplitude of either 0 or 
1.  When 0)( ≥− at  we will call this signal with an amplitude of 1 as a unit 
step 𝑢𝑢(𝑡𝑡),𝑢𝑢(𝑡𝑡 − 𝑎𝑎), etc. 
 
In the literature the unit step is frequently seen as )(tu  or as )( atu −  when time 
shifted.  We will now follow that convention. 
 
Using the definition, the Laplace transform of the unit step is 
 

∫
∞ −=

0
)()( dtetusF st  

Since 1)( =tu  for 0≥t  and 0 everywhere else, we can re-write the above as 
 

s
dtesF st 1)(

0
== −∞

∫  
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s
tu 1)( ↔  

 
by extension 
 

s
KtKu ↔)(  

 
Consider a time shifted step, )( atu − .  Since the signal does not exist until 

at = , the limits of integration are changed to reflect this reality; therefore let 
)()( atutf −=  and apply the definition 

 

∫
∞ −∞−

− +=
−

=−=
a

as

a

st
st

s
e

s
edteatusF 0|)()(  

 
So 
 

s
eatu

as−

↔− )(  

 
and by extension 
 

s
KeatKu

as−

↔− )(  

Examples, 
 

s
etu

s34)3(4
−

↔−  

 

s
etu

s76.5033.9)76.5(033.9
−−

↔−−  

 
Pay attention to the exponent as− ; it is a codeword, and the codeword means 
the signal does not start until at = .  That is all it means; a  is the time offset.  
Notice that the exponent as−  has a different interpretation from the exponent 

st− ; one is a specific time and the other is general.  Time offset, )( atu − , can 
be applied to any signal in the chart of transform pairs in Table 1 with a 
corresponding right hand side factor of sae−  
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An example is 
  

22)(
)()sin(

ωσ
ωωσ

++
↔−

−
−

s
eKatutKe

sa
t  

 
or 
 

( ) 495
77)10()7sin(11 2

10
5

++
↔−

−
−

s
etute

s
t  

 
The ability to mathematically model time shifting gets one step closer to 
modeling a rectangular pulse.  The next step is to add two unit steps, one 
positive and the other negative.   
 
Conceptually, this signal can be constructed this way, 
 

1

time 

Unit Step u(t)

t=o
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0

time 

Negative Unit Step  -u(t-a)

t=o

-1

t=a

 
 

0

time 

Coincident u(t) &  -u(t-a)

t=o

-1

t=a

1

 
 



   

Rev. A.3 
18 

0

time 

Algebraic Result of u(t) &  -u(t-a)

t=o

-1

t=a

1

 
 
The algebraic addition of a unit step and a negative time shifted unit step 
creates the foundation of the signal we are looking for.  Mathematically it is 
modeled by 
 

s
e

s
atutu

as−

−↔−−
1)()(  

 
Again, by extension 
 

( )ase
s
KatutuK −−↔−− 1))()((  

For example  
 

))5()((5 −− tutu  
Looks like 
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t=5

Amplitude =5

 
with a transform of                  ( )se

s
515 −−  

 
The Transform of the Derivative and the Integral of )(tf : 
 
Suppose we wish to find the Laplace transform of the derivative of a function, 

)(' tf .  Again we will begin with the definition 
 

∫
∞ −=

0
)(')( dtetfsF st  

 
Integrating by parts and allowing the variables to be distributed thus, 
 

)('
)('

0

tfdvsedu
dttfveu

st

st

=−=

==
−

∞− ∫  

 

∫ ∫∫∫
∞ ∞−∞−∞ − +==

0 000
)(')(')(')( dttfesdttfedtetfsF ststst  

since 
)()('

0
tfdttf =∫

∞  
re-writing becomes 
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dtetfstfedtetfsF ststst ∫∫
∞ −

∞
−∞ − +==

000
)(|)()(')(  

and since by definition 
)()(

0
sFdtetf st =∫

∞ −  
then 

)()0()('
0

ssFfdtetf st +−=∫
∞ −  

or 
)0()()(' fssFtf −↔   (Transform pair #9) 

Some examples,  

)0()( cc
c vssCv

dt
dv

C −↔  

 
)0()( issLi

dt
diL −↔  

 
As a side bar, since izv = , it follows that sL  and sC

1  are impedances. 
 
The last transform that we will consider in this part is the integral of ).(tf  
 
Applying the definition, as usual 
 

dtetfsF st∫ ∫
∞ −





=

0
)()(  

Again, we will integrate by parts, and choose 
 

st

st

edvtfdu
s
evdttfu
−

−

==

−
== ∫

)(

)(  

then  

∫∫∫ ∫ −∞
−∞ − +







 −
=





 dtetf

ss
edttfdtetf st

st
st )(1|)()( 00

 

 
Evaluating the first term on the RHS 
 

( ) ( ) 01)0(0)(
0

00
=





−





 ∫∫

∞
dtfdttf  limits on the second integral are confined to 

0 →  0+ as the overall integral is being evaluated at 0 
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the transform becomes, 
 

s
sFdtetf st )(0)(

0
+=





∫ ∫

∞ −  

or 

∫ ↔
s
sFdttf )()(   (Transform pair #10) 

 
a circuit example is, 
 

∫ ↔
sL

svdttv
L

L
L

)()(1  

 
For a simple RLC series circuit, the differential equation satisfying 
Kirchhoff's Voltage Law is 
 

𝑠𝑠𝑅𝑅 +
1
𝐶𝐶� 𝑠𝑠𝑑𝑑𝑡𝑡 + 𝐿𝐿𝑑𝑑𝑠𝑠 = 𝑣𝑣𝑖𝑖𝑖𝑖 

 

𝑠𝑠𝑅𝑅𝐶𝐶 + �𝑠𝑠𝑑𝑑𝑡𝑡 + 𝐿𝐿𝐶𝐶𝑑𝑑𝑠𝑠 = 𝐶𝐶𝑣𝑣𝑖𝑖𝑖𝑖 

 

𝑠𝑠(𝑐𝑐)𝑅𝑅𝐶𝐶 +
𝑠𝑠(𝑐𝑐)
𝑐𝑐 + 𝑐𝑐𝐿𝐿𝐶𝐶𝑠𝑠(𝑐𝑐) = 𝐶𝐶𝑣𝑣𝑖𝑖𝑖𝑖(𝑐𝑐) 

 
The above by direct application of the transform pairs. It then converts to 
(after re-arranging) 
 

)()()1( 2 svsi
LC

s
L
Rs

s
L

in=++





     or 

 

𝑠𝑠(𝑐𝑐) =
𝑐𝑐𝑣𝑣𝑖𝑖𝑖𝑖(𝑠𝑠)

𝐿𝐿(𝑐𝑐2 + 𝑅𝑅
𝐿𝐿 𝑐𝑐 + 1

𝐿𝐿𝐶𝐶)
 

 
As we shall see, this quadratic form plays a major role in circuit analysis and 
design.  It becomes the focus of our attention particularly when issues of 
circuit stability occur. 
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Another transform for Part 1, which is really a property of the mathematics is 
the transform of )()( tbgtaf + , applying the definition 
 

( )∫ ∫ ∫
∞ ∞ ∞ −−− +=+=+

0 0 0
)()()()()()( sbGsaFdtetgbdtetfadtetbgtaf ststst  

 
)()()()( sbGsaFtbgtaf +↔+   (Transform Pair #11) 

 
Examples:  

22 200
53)200cos(53
+

+↔+
s

s
s

t  

 
( )
( )22

2

200
150008)200cos(53
+
+

↔+
ss
st  

 
Later, we will see how denominator factoring prevents the masking of the 
transformation pair identity and partial fraction expansion reduces the right 
side of the lower of the above two transforms to the right side of the upper. 
 
In Part 2 of this series, we will begin to use these transforms for constructing 
circuit equations and simple transfer functions.  Also any other transforms we 
might need for analysis will be developed as necessary.  The emphasis will be 
on learning by examples.  Of course theoretical foundations will be provided 
when needed.   
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Summarizing the pairs for Part 1 
 

Transform )(tf  )(sF  
1 K  

s
K  

2 tKe σ−  
σ+s

K  

3  
22 ω

ω
+s

K  

4 )cos( tK ω  
22 ω+s

Ks  

5 )sin( tKe t ωσ−  
( ) 22 ωσ

ω
++s

K  

6 )cos( tKe t ωσ−  ( )
( )( )22 ωσ

σ
++

+
s

sK  

7 )(tδ  1 
           7a* )(tKδ  K  
8 )( atKu −  

s
Ke as−

 

9 )(' tf  )0()( fssF −  
10 ∫ dttf )(  

s
sF )(  

11 )()( tbgtaf +  )()( sbGsaF +  
* K is preserved for practical circuit reasons, not for 
theoretical reasons as ∞∗K is approximately equal 
to ∞  

 
Table 1 

 
Table 1 is not all inclusive and other pairs will be examined and added when 
needed.  But for beginning analysis purposes Table 1 is adequate.   
 
It is very important to understand that to be able transform any )(sF  to an )(tf
, )(sF  must be reduced to one of the forms so far developed.  If it is not in one 
of these forms it cannot be operated on until it is.  Study the right hand side 
forms, they identify the left hand side.   
 

)sin( tK ω


